Effect of bias potential and dimension on electrochemical migration of capacitors for implantable devices

Author:

Du Shiyao,Li Feng,Grumsen Flemming Bjerg,Ambat Rajan,Tang Ao,Li YingORCID

Abstract

AbstractDendrite formation induced by electrochemical migration (ECM) is a common reliability problem occurring on printed circuit boards (PCBs), which significantly threatens the long-term safe operations of current implantable electronic devices (IEDs). Although several factors (i.e., contaminations, humidity, temperature) are proved to be the parameters closely related to ECM susceptibility of capacitors on a PCB under climate environments, further targeted research under other environments still needs to be conducted as ECM is highly environmental-dependent. Herein, the effects of bias potential and pitch dimension on ECM sensitivity are systematically studied using various sizes of capacitors on a test PCB under a human implantation environment. The finite element method first proves that a DC voltage pattern could be regarded as an accelerated test compared to other waveforms. Subsequent chronoamperometry tests using the DC potential further indicate that dendrite formation is closely related to pitch dimension under low bias potential, while under high bias potential electric field is also the dominating factor of dendrite formation for capacitors on a PCB. Benefiting from the electrochemical impedance spectroscopy (EIS) technique, the capacitor reliability under different corrosion states is also evaluated in a detailed manner. This work offers great value both in electronic corrosion mechanisms and future rational design for reliable IEDs.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3