The Cell Tracking Challenge: 10 years of objective benchmarking
-
Published:2023-05-18
Issue:7
Volume:20
Page:1010-1020
-
ISSN:1548-7091
-
Container-title:Nature Methods
-
language:en
-
Short-container-title:Nat Methods
Author:
Maška MartinORCID, Ulman VladimírORCID, Delgado-Rodriguez PabloORCID, Gómez-de-Mariscal EstibalizORCID, Nečasová TerezaORCID, Guerrero Peña Fidel A.ORCID, Ren Tsang IngORCID, Meyerowitz Elliot M.ORCID, Scherr TimORCID, Löffler KatharinaORCID, Mikut RalfORCID, Guo TianqiORCID, Wang Yin, Allebach Jan P., Bao Rina, Al-Shakarji Noor M., Rahmon GaniORCID, Toubal Imad EddineORCID, Palaniappan Kannappan, Lux FilipORCID, Matula PetrORCID, Sugawara KoORCID, Magnusson Klas E. G.ORCID, Aho Layton, Cohen Andrew R., Arbelle Assaf, Ben-Haim Tal, Raviv Tammy Riklin, Isensee Fabian, Jäger Paul F., Maier-Hein Klaus H., Zhu YanmingORCID, Ederra Cristina, Urbiola Ainhoa, Meijering Erik, Cunha AlexandreORCID, Muñoz-Barrutia ArrateORCID, Kozubek MichalORCID, Ortiz-de-Solórzano CarlosORCID
Abstract
AbstractThe Cell Tracking Challenge is an ongoing benchmarking initiative that has become a reference in cell segmentation and tracking algorithm development. Here, we present a significant number of improvements introduced in the challenge since our 2017 report. These include the creation of a new segmentation-only benchmark, the enrichment of the dataset repository with new datasets that increase its diversity and complexity, and the creation of a silver standard reference corpus based on the most competitive results, which will be of particular interest for data-hungry deep learning-based strategies. Furthermore, we present the up-to-date cell segmentation and tracking leaderboards, an in-depth analysis of the relationship between the performance of the state-of-the-art methods and the properties of the datasets and annotations, and two novel, insightful studies about the generalizability and the reusability of top-performing methods. These studies provide critical practical conclusions for both developers and users of traditional and machine learning-based cell segmentation and tracking algorithms.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Biochemistry,Biotechnology
Reference47 articles.
1. May, M., Denecke, B., Schroeder, T., Götz, M. & Faissner, A. Cell tracking in vitro reveals that the extracellular matrix glycoprotein Tenascin-C modulates cell cycle length and differentiation in neural stem/progenitor cells of the developing mouse spinal cord. Biol. Open 7, bio027730 (2018). 2. Kazwiny, Y. et al. Extracting neuronal activity signals from microscopy recordings of contractile tissue using B-spline explicit active surfaces (BEAS) cell tracking. Sci. Rep. 11, 10937 (2021). 3. Lovas, J. R. & Yuste, R. Ensemble synchronization in the reassembly of Hydra’s nervous system. Curr. Biol. 31, 3784–3796 (2022). 4. Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019). 5. Lewis, S. M. et al. Spatial omics and multiplexed imaging to explore cancer biology. Nat. Methods 18, 997–1012 (2021).
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|