Author:
Abass Hawraa Hadi,Hasan Bushra A
Abstract
AlO-doped ZnO nanocrystalline thin films from with nano crystallite size in the range (19-15 nm) were fabricated by pulsed laser deposition technique. The reduction of crystallite size by increasing of doping ratio shift the bandgap to IR region the optical band gap decreases in a consistent manner, from 3.21to 2.1 eV by increasing AlO doping ratio from 0 to 7wt% but then returns to grow up to 3.21 eV by a further increase the doping ratio. The bandgap increment obtained for 9% AlO dopant concentration can be clarified in terms of the Burstein–Moss effect whereas the aluminum donor atom increased the carrier's concentration which in turn shifts the Fermi level and widened the bandgap (blue-shift). The engineering of the bandgap by low concentration of AlO dopant makes ZnO: AlO thin films favorable for the fabrication of optoelectronic devices. The optical constants were calculated and was found to be greatly affected by the increasing the doping ratio.
Reference48 articles.
1. Kim H., Gilmore a.C., Pique A., Horwitz J., Mattoussi H., Murata H., Kafafi Z., and Chrisey D., Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. Journal of applied physics, 1999. 86(11) : pp. 6451-6461.
2. Kim H., Gilmore C., Horwitz J., Pique A., Murata H., Kushto G., Schlaf R., Kafafi Z., and Chrisey D., Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices. Applied Physics Letters, 2000. 76(3): pp. 259-261.
3. Kim H., Pique A., Horwitz J., Murata H., Kafafi Z., Gilmore C., and Chrisey D., Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices. Thin solid films, 2000. 377: pp. 798-802.
4. Zhao J.-L., Li X.-M., Bian J.-M., Yu W.-D., and Gao X.-D., Structural, optical and electrical properties of ZnO films grown by pulsed laser deposition (PLD). Journal of Crystal Growth, 2005. 276(3-4): pp. 507-512.
5. Das R. and Ray S., Thickness dependence of the properties of magnetron sputtered ZnO: A1 films and its application in a-Si: H thin film solar cell. Indian Journal of Physics, 2004. 78: pp. 901-906.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献