Simulation of rice yield with resource conserving technologies for early, mid and end centuries under changing climatic conditions using DSSAT model

Author:

Shahid Mohammad1,Goud Bandaru Raghavendra1,Nayak Amaresh Kumar1,Tripathi Rahul1,Mohanty Sangita1,Bhaduri Debarati1,Chatterjee Dibyendu1,Debnath Manish1,Chatterjee Sumanta1,S Vijayakumar1,Dash Pradeep Kumar1,Pathak Himanshu1

Affiliation:

1. ICAR-National Rice Research Institute, Cuttack, Odisha, India

Abstract

Rice (Oryza sativa L.) is one of the major crop of India and the lifeline of the Eastern states. The challenges however are to produce more food for the increasing population by utilizing limited resources and maintain it under climate change conditions. This can be achieved by devising appropriate agro-techniques. We calibrated and evaluated CERES-Rice model of Decision Support System for Agro-Technology Transfer (DSSAT) for different resource conserving technologies (RCTs) to assess their effects on yield of transplanted rice under projected climate change scenarios. Yields were projected for 2030, 2050 and 2070 using data downloaded from MarkSim® DSSAT weather file generator for RCP 4.5 climate change scenario. The simulated result indicated that the productivity of transplanted rice under resource conserving technologies is likely to increase by 11.6-14.9% in 2030, 18.6-22.3% in 2050 and 17.6-20.2% in 2070 compared to the present yield levels (2015) with current management practices. Yield can further be enhanced through adoption of appropriate resource conservation technologies (RCTs). The DSSAT model predicted the effects of RCTs in transplanted rice very well and can be a useful tool for evaluating the effects of climate change on rice under these managements.

Publisher

Association of Rice Research Workers

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3