Molecular characterization and varietal identification for multiple abiotic stress tolerance in rice (Oryza sativa L.)

Author:

Ali Alif1,R Beena1,Naga Manikanta Chennamsetti Lakshmi1,Alex Swapna1,KB Soni1,MM Viji1

Affiliation:

1. College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala, India

Abstract

Coexistence of two or more abiotic stresses is common in most of the rainfed lowland and upland rice growing areas of India and worldwide. Rice production under these conditions is not sustainable. Identification and development of multiple abiotic stress tolerant rice varieties are to be addressed. Here we tried to identify multiple abiotic stress tolerant varieties from a collection of earlier identified varieties for single stress and validated the known SSR markers for stress tolerance. Twenty rice genotypes were evaluated for individual abiotic stress such as drought, salinity and temperature initially and the tolerant three genotypes in each case were further evaluated for combination of stresses various physio-morphological and biochemical parameters were recorded. Among the genotypes evaluated for combination of stresses, PTB-7 was found to be tolerant for drought and salinity, Nagina-22 was tolerant against high temperature and salinity. However, the seeds did not germinate in the presence of all three stresses simultaneously. Twenty rice varieties viz., Chomala, MO-16, PTB-35, PTB-60, PTB-39, PTB-55, PTB-30, PTB-7, CRdhan307, Apo, Vyttila-3, Vyttila-4, Vyttila-5, Vyttila-6, Vyttila-7, Vyttila-8, Vyttila-9, Vyttila-10, Nagina-22 and NL-44 were further investigated using microsatellite markers to confirm the genotypic level of tolerance to combination of abiotic stresses. Rice genotypes were screened using 30 reported simple sequence repeat (SSR) markers that are linked to drought, salinity and temperature. Molecular marker analysis of rice genotypes also confirmed that RM8904 and RM1287 were associated with salinity tolerance, RM2612, RM6100 and RM5749 were linked to high temperature tolerant trait. Population analysis also revealed that there is five subpopulation among rice genotypes.

Publisher

Association of Rice Research Workers

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3