Understanding the physiological, genetic and molecular basis of nitrogen deficiency tolerance and their application in rice improvement

Author:

Harika A1,R Dhandapani1,Kumar Sudhir1,S Lekshmy1,T Vinutha1,KE Ranjith1,Kumar Mahesh1,D Madhurima1,Sahoo RN1,C Viswanathan1

Affiliation:

1. ICAR - Indian Agricultural Research Institute, New Delhi, India

Abstract

Nitrogen (N) is a major nutrient required for growth and yield of rice plants. Several factors including plant, edapic and climate conditions influence the criticle yield response curve of the plants. Apart from breeding for N responsive rice varieties, excessive use of nitrogenous fertilizers have become a general farmers practice to boost rice productivity under intensive cropping system. Now, it is imperative to orient the crop improvement programme for sustainable crop production strategy as well as to achieve the evergreen revolution through improving nitrogen use efficiency (NUE) under global climate change condition. To develop N-efficient rice varieties under crop breeding programs, it is crucial to comprehend the physiological, genetic and molecular features associated with tolerance to nitrogen deprivation. It has always been challenging for a rice breeders to develop rice varieties with high nitrogen use efficiency (NUE), as it is highly complex physiological trait involving several component traits and its dynamic interaction with environemental factor. NUE is a polygenic traits controlled by number of quantitative trait loci's at genomic level. Till date, researchers targeted component traits for increasing NUE such as, nitrogen uptake/absorption, transport from root to shoot, assimilation, utilisation, remobilisation, reasssssmilation and partitioning /redistribution. Here, we described a short summary of the physiological, genetic and molecular underpinnings of nitrogen deficit tolerance and how these prior art information can be used for improving NUE in rice. Insight from our discussions may facilitate the breeders to improve the NUE of rice plants in future.

Publisher

Association of Rice Research Workers

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3