MATHEMATICAL MODELLING APPROACH OF THE STUDY OF EBOLA VIRUS DISEASE TRANSMISSION DYNAMICS IN A DEVELOPING COUNTRY.

Author:

MBAH Godwin Christopher E,ONAH Ifeanyi Sunday,AHMAN Queeneth Ojoma,COLLINS Obiora C,ASOGWA Christopher C,OKOYE Chukwudi

Abstract

Background: Ebola Virus causes disease both in human and non-human primates especially in developing countries.  Materials and Methods: Here we studied the spread of Ebola virus in and hence obtained a system of equations comprising of eighteen equations which completely described the transmission of Ebola Virus in a population where control measures like vaccination, treatment, quarantine, isolation of infectious patients while on treatment and use of condom were incorporated and a major source of contacting the disease which is the traditional washing of dead bodies was also incorporated. We investigated the local stability of the disease-free equilibrium using the Jacobian approach and the global stability using the center manifold theorem. We also investigated the local and global stability of the endemic theorem by constructing a Lyapunov function using the LaSalle’s Invariant principle. Results: This modeled system of equations was analyzed, and result showed that the disease-free equilibrium where both local and globally stable and that the system exhibits a forward bifurcation. The endemic equilibrium also was showed to be stable when the reproduction number is greater than one. Conclusions: Furthermore, numerical simulations were carried out to further see the impacts of the various control measures on the various compartments of the population. Our graphs show that isolation is the best option for an infectious person to be treated to avoid the disease been spread further and leads to quicker and better recovery.

Publisher

African Traditional Herbal Medicine Supporters Initiative (ATHMSI)

Subject

Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3