Removal of estrone in water and wastewater by photocatalysis: a systematic review

Author:

Sánchez-Barbosa Leadina1ORCID,Villagran-Sánchez Paul Steven1ORCID,Armenise-Gil Sabino Alexander1ORCID

Affiliation:

1. Universidad Politécnica Salesiana

Abstract

Introduction. Estrone (E1) is a type of natural hormone estrogen which is produced mainly by the ovaries, adipose tissue, fibroblasts skin, placenta, and brain. E1 is part of the so called endocrine disrupting compounds (EDC), a type of organic contaminants present at trace levels in the water that can interfere with the normal function of the endocrine systems in humans and wildlife. Objective. To describe the experimental conditions that have given the best results in the degradation or photocatalytic removal of estrone referenced in the scientific literature using photocatalysis. Materials and methods used a systematic review, directed by search criteria, inclusion and exclusion, to extract information concerning the experimental conditions. Results. The results show that a) a higher removal rate is achieved with a higher load of the catalyst or with a modified catalyst; b) the use of radiation at 254 nm is convenient in matrices containing mixtures of compounds; c) the ideal pH will be lower than the isoelectric point or the zero charge point of the catalyst; d) the removal rate is faster in ultra-pure water than in synthetic or real wastewater. The study was limited to the identification of investigations in which the degradation was performed using TiO2 as a catalyst and the articles fulfilled the inclusion and exclusion criteria. Conclusions. The main contribution of this research is the identification of the best conditions for the degradation of the pollutant in different conditions and matrices, which is the basis for the work of the research group. The removal of estrone is greater when the catalyst load is increased or by the use of a modified one; or when the pH is lower than the isoelectric point or the zero charge point of the catalyst; higher in ultra-pure water than in wastewater.

Publisher

Corporacion Universitaria Lasallista

Subject

Management, Monitoring, Policy and Law,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3