L-M Based ANN for Predicting the Location of DG under Contingency Condition

Author:

Rao D. Uma Maheswara1,Rao Dr. G. Sambasiva1,Swarnasri Dr. K.1

Affiliation:

1. Department of EEE, R.V.R & J.C. College of Engineering, Chowdavaram, Guntur, Andhra Pradesh, India

Abstract

The continuing monitoring of online voltage stability and the increased loadability of the transmission lines for the existing electrical power system are the two major challenges that today's energy management systems must deal with. As a result, evaluating online voltage stability under various loading situations is extremely challenging and time-consuming. The line voltage stability indices using an Artificial Neural Network (ANN), the system describes online voltage monitoring and warns the operator before voltage dips. The simulation's findings show that the proposed system may boost system loadability while also lowering the cost of installing an electrical power system and guaranteeing the security of power system operation.

Publisher

FOREX Publication

Subject

Electrical and Electronic Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3