Resource Optimization in H-CRN with Supervised Learning Based Spectrum Prediction Technique

Author:

Prabhavathi S.1,Saminadan V.1

Affiliation:

1. Department of Electronics and Communication Engineering Puducherry Technological University, Puducherry, India

Abstract

Cognitive radio network shows potential means of granting intensifying demand for wireless applications. In this model, an efficient resource optimization scheme with Priority Pricing Technique (PPT) is proposed with supervised learning-based SVM to tackle limited spectrum availability and underutilization in Hybrid-Cognitive Radio Networks (H-CRN). H-CRN works under the principle of detection of PUs states (active/inactive). If spectrum sensing is made in favor of active PUs, then the CSI (Channel State Information) is estimated and works in underlay principle. If it is made in favor of inactive PUs, then the transmission is performed in overlay manner. In the proposed PPT the PUs and SUs with highest channel gain have the highest priority to use the spectral resources. SVM is used as an effective technique of spectrum sensing to provide higher probability of detection of PUs as soon as possible. The proposed method faces following challenges such as in order to enhance the CRN transmission performance, the PUs have to withstand more interference power and transmit power control is needed in improving the sum rates when the interference is severe in H-CRN. With Simulation outcomes, the assessment of the proposed (PPT) model among (Fixed Pricing Technique and Without Pricing Technique) indicates the proposed method's improved efficiency. The results reveal significant effectiveness in obtaining better classification accuracy with less computation complexity, increased throughput, spectral efficiency and energy efficiency of the network.

Publisher

FOREX Publication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3