Design of an Efficient & Secure Steganographic Model using Modified LSB & Encryption Process

Author:

Yadav Ekta1ORCID,Singh Ajit1

Affiliation:

1. Department of Computer Science and Engineering, Bhagat Phool Singh Mahila Vidyalaya, India

Abstract

This paper introduces a novel steganographic model for robust multimodal data security, seamlessly integrating a modified Least Significant Bit (LSB) technique with encryption, making it applicable to diverse data types such as images, audio, video, and text. Overcoming challenges posed by existing complex models and communication delays, our approach employs a modified LSB technique to encode similar sized data samples, followed by dynamic bioinspired elliptic curve cryptography (BECC) utilizing a Mayfly Optimization (MO) Model. This adaptive strategy optimizes curve types and prime key sets, significantly enhancing data security while minimizing delays and complexities across diverse data sizes. The proposed model achieves an 8.3% reduction in encryption and steganographic process delays, while simultaneously maintaining superior Peak Signal to Noise Ratio (PSNR) and lower Mean Squared Error (MSE) levels compared to existing methods when applied to the same data samples. This highlights its effectiveness in securing dynamic datasets without compromising efficiency.

Publisher

FOREX Publication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3