Adaptive Video Coding Framework with Spatial-Temporal Fusion for Optimized Streaming in Next-Generation Networks

Author:

Charles Pranob Kumar1,Khan Habibulla2,Rao K S3

Affiliation:

1. Research Scholar, Dept of ECE, JNTUH, India

2. Professor - Dept of ECE, K L University India

3. Principal - Jyothishmathi Institute of Technology and Science (JITS), India

Abstract

Predicting future frames and improving inter-frame prediction are ongoing challenges in the field of video streaming. By creating a novel framework called STreamNet (Spatial-Temporal Video Coding), fusing bidirectional long short-term memory with temporal convolutional networks, this work aims to address the issue at hand. The development of STreamNet, which combines spatial hierarchies with local and global temporal dependencies in a seamless manner, along with sophisticated preprocessing, attention mechanisms, residual learning, and effective compression techniques, is the main contribution. Significantly, STreamNet claims to provide improved video coding quality and efficiency, making it suitable for next-generation networks. STreamNet has the potential to provide reliable and optimal streaming in high-demand network environments, as shown by preliminary tests that show a performance advantage over existing methods.

Publisher

FOREX Publication

Subject

Electrical and Electronic Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3