An IoT based Traffic Control System using Spatio-Temporal Shape Process for Density Estimation

Author:

Rajan Karthick1,Ganesh Kumar T.2,Sampath Kumar K.3

Affiliation:

1. Research Scholar, School of Computing Science and Engineering, Galgotias University, Gautam Buddh Nagar, Uttar Pradesh, India

2. Associate Professor, School of Computer Science and Engineering, Galgotias University, Buddh Nagar, Uttar Pradesh, India

3. Professor, Computer Science and Engineering, AMET University, Chennai 603112, Tamilnadu, India

Abstract

In response to the escalating challenges posed by urban congestion and road accidents, this paper addresses the imperative for advanced traffic control systems in smart cities. However, there is limited research work available in the literature to develop this traffic management system due to unpredictable traffic flow occurring on the road. To overcome this shortcoming in the traffic control system, this paper proposed a novel vehicle density estimation method that considers group of vehicles, availability and applicability of IoT in smart cities provide an efficient medium to handle public safety by using condition-based intensity function that will be a medium to cope with traffic challenges and thus build an intelligent traffic control system.

Publisher

FOREX Publication

Reference37 articles.

1. WHO, “World Health Statistics 2014: A Wealth of Information of Global Public Health,” Geneva, 2014. [Online]. Available: https://apps.who.int/iris/handle/10665/112739.

2. WHO, “Global Status Report on Road Safety 2018: Summary,” Geneva, 2018. [Online]. Available:https://www.who.int/violence_injury_prevention/road_safety_status/20 18/English-Summary-GSRRS2018.pdf.

3. E. B. Lerner and R. M. Moscati, “The Golden Hour: Scientific Fact or Medical ‘Urban Legend’?,” Acad. Emerg. Med., 2001.

4. R. Sánchez-Mangas, A. García-Ferrrer, A. De Juan, and A. M. Arroyo, “The probability of death in road traffic accidents. How important is a quick medical response?,” Accid. Anal. Prev., 2010.

5. M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Cla, “Middleware for internet of things: A survey,” IEEE Internet Things J., 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3