Empowering Smart City IoT Network Intrusion Detection with Advanced Ensemble Learning-based Feature Selection

Author:

Merlin R. Tino1,Ravi R.2

Affiliation:

1. Research Scholar, Research and Development Centre, Bharathiar University, Coimbatore 641046, Tamil Nadu, India

2. Anna University Recognized Research Centre, Department of Computer Science and Engineering, Francis Xavier Engineering College, Tirunelveli, India

Abstract

This study presents an advanced methodology tailored for enhancing the performance of Intrusion Detection Systems (IDS) deployed in Internet of Things (IoT) networks within smart city environments. Through the integration of advanced techniques in data preprocessing, feature selection, and ensemble classification, the proposed approach addresses the unique challenges associated with securing IoT networks in urban settings. Leveraging techniques such as SelectKBest, Recursive Feature Elimination (RFE), and Principal Component Analysis (PCA), combined with the Gradient-Based One Side Sampling (GOSS) technique for model training, the methodology achieves high accuracy, precision, recall, and F1 score across various evaluation scenarios. Evaluation on the UNSW-NB15 dataset demonstrates the effectiveness of the proposed approach, with comparative analysis showcasing its superiority over existing techniques.

Publisher

FOREX Publication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3