Compression of Medical Images Using Wavelet Transform and Metaheuristic Algorithm for Telemedicine Applications

Author:

Shyamala N.1,Geetha Dr. S.2

Affiliation:

1. Research Scholar, Government Arts and Science College, Udumalpet, India

2. Assistant Professor, Government Arts and Science College for Women, Puliakulam, Coimbatore, India

Abstract

Medical image compression becomes necessary to efficiently handle huge number of medical images for storage and transmission purposes. Wavelet transform is one of the popular techniques widely used for medical image compression. However, these methods have some limitations like discontinuity which occurs when reducing image size employing thresholding method. To overcome this, optimization method is considered with the available compression methods. In this paper, a method is proposed for efficient compression of medical images based on integer wavelet transform and modified grasshopper optimization algorithm. Medical images are pre-processed using hybrid median filter to discard noise and then decomposed using integer wavelet transform. The proposed method employed modified grasshopper optimization algorithm to select the optimal coefficients for efficient compression and decompression. Four different imaging techniques, particularly magnetic resonance imaging, computed tomography, ultrasound, and X-ray, were used in a series of tests. The suggested method's compressing performance is proven by comparing it to well-known approaches in terms of mean square error, peak signal to noise ratio, and mean structural similarity index at various compression ratios. The findings showed that the proposed approach provided effective compression with high decompression image quality.

Publisher

FOREX Publication

Subject

Electrical and Electronic Engineering,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Diagnostic Study of Content-Based Image Retrieval Technique for Studying the CT Images of Lung Nodules and Prediction of Lung Cancer as a Biometric Tool;International Journal of Electrical and Electronics Research;2023-06-30

2. Multi-image Feature Map-Based Watermarking Techniques Using Transformer;International Journal of Electrical and Electronics Research;2023-05-30

3. Linear Vector Quantization for the Diagnosis of Ground Bud Necrosis Virus in Tomato;International Journal of Electrical and Electronics Research;2022-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3