DFIG in Wind Energy Applications with High Order Sliding Mode Observer-based Fault-Tolerant Control Scheme using Sea Gull Optimization

Author:

S Sarika.1,Mary. S Anitha Janet2

Affiliation:

1. Research Scholar, Department of Electrical and Electronics Engineering, Noorul Islam Centre for Higher Education, Thuckalay, Tamil Nadu, India

2. Associate Professor, Department of Electrical and Electronics Engineering, Noorul Islam Centre for Higher Education, Kanyakumari, Tamil Nadu, India

Abstract

This paper describes a new method for maximizing power extraction from a wind energy conversion system (WECS) by using a doubly fed induction generator (DFIG) that operates below nominal wind speed. To maximize the collected power of a wind turbine (WTG) exposed to actuator failure, a fault-tolerant high-order sliding mode observer (HOSMO) and Seagull Optimization Algorithm with a model predictive controller (MPC) technique is proposed. Evaluate both the real state and the sensor error simultaneously using a higher-order sliding-mode observer. Active fault tolerant controllers are designed to regulate wind turbine rotor speed and power in the presence of actuator defects and uncertainty. With the growing interest in employing wind turbines (WTGs) as the primary generators of electrical energy, fault tolerance has been seen as essential to improving efficiency and reliability. This research focuses on optimal fault-tolerant pitch control, which is used to modify the pitch angle of wind turbine blades in the event of sensor, actuator, and system failures. A Seagull Optimization Algorithm (SOA) is proposed to tune controller parameters to improve the performance of WT. The proposed method has achieved 92% of power tracking performance when compared to existing method.

Publisher

FOREX Publication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3