A Novel Optimized Neural Network Model for Ink Selection in Printed Electronics

Author:

Narayanan Alagusundari1,Pillai Dr. Sivakumari Subramania1

Affiliation:

1. Department of Computer Science and Engineering, School of Engineering, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamilnadu, India

Abstract

The field of Printed Electronics (PE) is experiencing significant growth in the industrial sector and generating considerable interest across various industries due to its ability to produce intricate components. The functionality of printed electronic products heavily relies on the utilization of conductive ink during the printing process, which plays a vital role in developing flexible electronic circuits and improving the communicative functionalities of objects. Selecting the right ink for printing is crucial to meet consumer requirements. However, the conventional approach to this process has been manual, labor-intensive, and time-consuming, relying on the expertise of designers. This paper presents an automated ink selection model for printed circuits. This novel method has been incorporated with Multilayer Perceptron Neural Network (MLPNN) and Particle Swarm Optimization (PSO), named PSO-MLPNN. A dataset containing material features is generated by gathering information from both literature and experimental observations. To ensure uniformity, the data undergoes preprocessing using the min-max method, which scales all features to a standardized range between 0 and 1. A four-layer MLPNN is constructed to choose the most suitable ink. The network is trained with the PSO algorithm. The bias and weight values of MLPNN are tuned using the PSO algorithm to attain high accuracy. The computed findings confirm that the ink selection is highly effective and more accurate when compared to both the standard MLPNN.

Publisher

FOREX Publication

Subject

Electrical and Electronic Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3