Analysis Optimization and Comparison to Detect Failures in the Squirrel-Cage Rotor using High-Level Wavelets

Author:

García Irving I Martínez1,Cabrera J. Mario Peña1

Affiliation:

1. LEIAI 4.0, IIMAS-UNAM, Maxico

Abstract

The methods and tools used for signal analysis extracted from the induction motors, such as the motor current signature analysis (MCSA) used for data collection on a non-invasive basis, the multi-resolution analysis (MRA) and discrete wavelet transform (DWT), are efficient tools for the signal analysis at different levels or resolutions, these tools have been applied together to improve detection of failures in the rotor of induction motors in condition of no-load. This work focuses on the study of rotor cage end ring, in a condition with lower-load or no-load where uncertainty predominates, this area of study is complicated to analyze correctly with conventional methods, but in these circumstances, the analysis using TDW has better performance. The article presents an alternative way of detecting failures in three phases induction motors in no-load state method with an optimized method and a comparison between results of the analysis with two different levels of the high-order Wavelet Daubechies, studying and evaluating its performance for the detection of broken ring, all this supported with a specific signal pre-processing and post-processing to improve the results of detection in incipient faults.

Publisher

FOREX Publication

Subject

Electrical and Electronic Engineering,Engineering (miscellaneous)

Reference35 articles.

1. M. J. Castelli, J.P. Fossati, M. T. Andrade, “Metodología de monitoreo, detection de fallos y diagnostico en motores asíncronos”, IEEE, 7º encuentro de Energía, Potencia, Instrumentación y Medidas, pp. 91-97, Octubre 2008.

2. M. Rezazadeh Mehrjou, N. Mariun, M. Hamiruce Marhaban, N. Misron, “Rotor fault condition monitoring techniques for squirrel-cage induction machine-A review”, Mechanical Systems and Signal Processing, Vol. 5. No. 8, pp.2827-2848, 2011.

3. A. Sharma, S. Chatterji, L. Mathew, M. Junaid Khan, “A Review of Fault Diagnostic and Monitoring”, International Journal for Research in Applied Science & Engineering Technology, Vol. 3, Issue 4, pp.1145-1152. April 2015.

4. W. T. Thomson, Ian Culbert, 2017. Current Signature Analysis for Condition Monitoring of Cage Induction Motors: Industrial Application and Case Histories, John Wiley & Sons, Inc.

5. D. A. Fernández Tavitas, J. P. Nieto González, “Detección de barras rotas en motores de inducción utilizando SMCSA (Square Motor Current Signature Analysis)”, Research in Computing Science, Vol.73, pp. 193–202, 2014.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3