Syn-depositional oil seeps in the Late Albian Paddy Member of the Peace River Formation (Early Cretaceous), north-central Alberta

Author:

Plint A. Guy1,Vannelli Kathleen M.12,Hart Bruce S.1,Jiang Chunging3

Affiliation:

1. Department of Earth Sciences The University of Western Ontario London, ON N6A 5B7

2. Present address: Department of Anesthesiology and Pain Medicine University of Toronto 123 Edward Street Toronto, ON M5G 1E2

3. Geological Survey of Canada 3303 – 33rd Street NW Calgary, AB T2L 2A7

Abstract

Abstract Controversy exists regarding the timing of emplacement of oil in the giant Athabasca and Peace River oil sands. Bitumen-cemented sandstones are present in the late Albian Paddy Member of the Peace River Formation; some cemented sandstones formed burrowed firmgrounds and reworked intraclasts, showing that oil was reaching surface by about 101–102 Ma. Estuarine and shallow-marine sandstones of the Paddy Member are exposed on the Peace and Heart rivers in the vicinity of the town of Peace River. Bitumen-cemented sandstone occurs in four stratigraphic settings: 1) An in-situ cement forms locally bedding-transgressive, sheet-like masses in cross-bedded estuarine sandstone; 2) A bitumen-cemented and heavily burrowed layer, 30–60 cm thick, lies immediately beneath a marine transgressive surface and shows that oil infiltrated downward into, and cemented, the upper surface of a shoreface sandbody. The firm sand was subsequently exhumed by transgressive erosion, fractured and burrowed by arthropods; 3) Rounded pebble- to cobble-sized clasts of bitumen-cemented sand lie on the floor of a tidal channel, and the channel floor surface is also stained and burrowed. This case suggests floating oil infiltrated the channel floor at low tide, subsequently hardening prior to erosion and burrowing; 4) Rounded cobble-to boulder-size clasts of bitumen-cemented sandstone, up to 1 m wide and 0.5 m thick, lie on a regional marine ravinement surface cut on the uppermost Paddy shoreface sandstone. The sand was permeated with oil, top-down, then oxidized to form a tough bitumen cement. The bituminous sand was subsequently scoured by waves during marine transgression to form a boulder lag that is enclosed in transgressive marine claystone. All four of these examples show that oil was reaching the Earth’s surface during Paddy time where it infiltrated porous sands to a depth of several decimetres, subsequently degrading and oxidizing to form a tough ‘asphalt pavement’ that attracted a burrowing firmground fauna and was eroded into cohesive intraclasts weighing many tens of kilograms. Pyrolysis proved the bitumen cement to be degraded oil, but it was not possible to identify the source-rock using gas chromatography-mass spectrometry. The Paddy ‘asphalt pavements’ are comparable to cements that form in beach sediments in the wake of catastrophic spills from tanker groundings. A direct analogue is provided by Eocene estuarine sediments in Dorset, U.K. There, bitumen-cemented estuarine sands also formed firmgrounds and intraclasts on channel-floor and marine transgressive surfaces.

Publisher

Canadian Society of Petroleum Geologists

Reference56 articles.

1. The dynamic interplay of oil mixing, charge timing, and biodegradation in forming the Alberta oil sands: Insights from geologic modeling and biogeochemistry. In: Heavy-oil and Oil-sand Petroleum Systems in Alberta and Beyond;Adams,2013

2. Lower Cretaceous of the Peace River region. In: Western Canada Sedimentary Basin, Rutherford Memorial Volume;Alberta Study Group,1954

3. Early Cretaceous (?early late Albian) echinoderms from northeastern British Columbia, Canada;Ausich;Canadian Journal of Earth Sciences,2015

4. Report on part of the basin of the Athabasca River, North-West Territory;Bell;Geological Survey of Canada, Report of Progress 1882-83-84 (cc),1884

5. Oil-source and oil-oil correlations and the origin of the heavy oil and bitumen accumulations in northern Alberta, Canada;Bennett;Organic Geochemistry,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3