Community of Hydrocarbon-Oxidizing Bacteria in Petroleum Products on the example of Ts-1 Aviation Fuel and AI-95 Gasoline

Author:

Lobakova E.S.1,Dolnikova G.A.1,Ivanova E.A.2,Sanjieva D.A.3,Burova A.A.2,Dzhabrailova Kh.S.2,Dedov A.G.3

Affiliation:

1. Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991 Russia

2. Gubkin Russian State University of Oil and Gas (NRU), Moscow, 119991 Russia

3. 2Gubkin Russian State University of Oil and Gas (NRU), Moscow, 119991 Russia 3A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences (TIPS RAS), Moscow, 119991 Russia

Abstract

It has been shown that the studied petroleum products (kerosene and gasoline) contain microflocules of heterogeneous microbial biofilms, the cells of which are integrated into a polymer matrix containing acidic polysaccharides. Thirteen bacterial strains were microbiologically isolated from petroleum products, and their taxonomy was identified by the 16S rRNA sequence. Kerosene was characterized by a diverse bacterial composition including the following genera: Sphingobacterium, Alcaligenes, Rhodococcus and Deinococcus, while gasoline bacterial community included only two genera: Bacillus and Paenibacillus. Representatives of the Deinococcus genera capable of growing on the hydrocarbons were isolated from fuels for the first time. The strains isolated from gasoline (Bacillus safensis Bi13 and Bacillus sp. Bi14) proved to be the most effective biodegraders of all n-alkanes, isoalkanes, cycloalkanes, alkenes and aromatic hydrocarbons, whereas the kerosene strain Rhodococcus erythropolis Bi6 effectively decomposed n-alkanes and trimethylbenzene. Both types of petroleum products contained hydrocarbon-oxidizing communities, some members of which were more active in the biodegradation of hydrocarbons, while others were capable of producing biosurfactants and had either emulsifying activity (Deinococcus sp. Bi7) or cell wall hydrophobicity (Sphingobacterium sp. Bi5 from kerosene; Bacillus pumilus Bi12 from gasoline) significantly higher than the average level. The indicated properties of the studied strains make them promising for use in bioremediation. biodegradation, petroleum products, hydrocarbon-oxidizing bacteria, bio-surfactants The work was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (topic no. 10.5422.2017/8.9.). Investigation of microbial potential in the use hydrocarbons was supported by the Russian Foundation for Basic Research (RFBR), contract no. 18-29-05067. Physicochemical research was performed within the framework of the state assignment to the TIPS RAS

Publisher

National Research Center Kurchatov Institute

Subject

Ecology,Applied Microbiology and Biotechnology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3