Gonadotropin-releasing hormone stimulates phospholipase C but not protein phosphorylation/dephosphorylation in plasma membrane from human epithelial ovarian cancer*

Author:

Imai A.,Ohno T.,Furui T.,Takahashi K.,Matsuda T.,Tamaya T.

Abstract

In view of advances in treatment of certain hormone-dependent cancers with analogues of gonadotropin-releasing hormone (Gn-RH), this study was undertaken to establish the signal transduction events interacting with Gn-RH receptor in a cell-free system prepared from human ovarian mucinous cystadenocarcinoma samples. A high affinity specific binding (Kd=8 × 10−9 M) of [3H] Gn-RH was demonstrated in two from two plasma membrane preparations. Gn-RH showed no effects on the rate of protein phosphorylation from [γ-32P] adenosine triphosphate in the plasma membrane preparations. On the other hand, incubation of plasma membrane isolated form [3H]inositol-labeled specimens with Gn-RH in the presence of guanosine thiotriphosphate resulted in the rapid production of inositol phosphates. The Gn-RH effects was concentration-dependent, and half-maximal activation occurred with 1–3 nm Gn-RH. The Gn-RH-stimulated membrane event was observed in all plasma membrane isolations tested, but not in those from uterine endometrial carcinoma of a given case. These results provide the first direct evidence that Gn-RH receptor is coupled to phosphoinositide hydrolysis but not to certain membrane protein phosphorylation/dephosphorylation in ovarian carcinoma plasma membrane. Though the functional role of this event in human ovarian cancer is still obscure, it might be part of a possible point of attack for therapeutic approaches using Gn-RH analogues in this malignancy.

Publisher

BMJ

Subject

Obstetrics and Gynecology,Oncology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3