Generation of biologically active anti-Cryptococcus neoformans IgG, IgE and IgA isotype switch variant antibodies by acridine orange mutagenesis

Author:

Spira G1,Paizi M1,Mazar S1,Nussbaum G2,Mukherjee S3,Casadevall A3

Affiliation:

1. The Bruce Rappaport Faculty of Medicine and the Rappaport Family Institute for Research in the Medical Sciences, Technion, Haifa, Israel

2. Department of Cell Biology

3. Department of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA

Abstract

Abstract Administration of MoAbs to Cryptococcus neoformans capsular glucuronoxylomannan (GXM) can alter the course of infection in mouse models. However, the effectiveness of these antibodies appears to depend on isotype and specificity. Comparison of isotype protection efficacy requires families of MoAbs with identical fine specificity and different constant region domain. The generation of such families by hybridoma technology is not always possible because the immune response produces MoAbs of limited classes or subclasses. In these instances isotype switch variants can be isolated in vitro. Unfortunately, standard methods of recovering spontaneous switch variants are often unsuccessful, mainly because of the low frequency of switching. In this study we demonstrate that acridine orange stimulation of an IgG3 anti-C. neoformans-producing hybridoma can be used to recover the entire set of isotype switch variants: IgG1, IgG2b, IgG2a, IgE and IgA. All isotype switch variants bind to GXM; fine specificity mapping, using an 11 amino acid peptide polysaccharide mimetope, revealed conservation of binding site specificity. Furthermore, all isotype switch variants reacted with an anti-idiotopic MoAb. The functional activity of this set of MoAbs was demonstrated by their ability to enhance phagocytosis and anti-fungal efficacy of human macrophage-like THP-1 cells, with IgG3 being the most effective and IgE being the least effective.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3