Role of macrophages in the development of arteritis in MRL strains of mice with a deficit in Fas-mediated apoptosis

Author:

Taniguchi Y1,Ito M R1,Mori S2,Yonehara S3,Nose M1

Affiliation:

1. Department of Pathology, Tohoku University School of Medicine

2. Department of Oral and Maxillofacial Surgery II, Tohoku University School of Dentistry, Sendai

3. Institute for Virus Research, Kyoto University Faculty of Medicine, Kyoto, Japan

Abstract

Abstract The lpr and gld genes have been shown to encode the Fas antigen deletion mutant and the Fas ligand (FasL) mutant, respectively. An MRL strain of mice bearing the gld gene was observed to spontaneously develop granulomatous arteritis, similar to that in mice bearing the lpr gene, indicating that arteritis in this strain is due to an inefficient Fas–FasL interaction resulting in an incapacity for Fas-mediated apoptosis. The arterial lesions in both strains were characterized by a remarkable perivascular accumulation of activated macrophages bearing Mac-2 antigen, following the infiltration of CD4+ cells, and this resulted in the destruction of the arterial wall. Almost all of these infiltrating cells were Fas-positive, as determined in MRL/gld mice. Macrophage colony-stimulating factor (M-CSF), which is present at increased levels in MRL/lpr mice, but not in MRL/Mp- +/+ (MRL/+) mice, induced the expression of Mac-2 antigen and Fas antigen on spleen adherent cells of MRL/+ mice. Moreover, continuous infusion of M-CSF into the peritoneal cavity or subcutis of MRL/+ mice induced the release of oxygen radicals of peritoneal macrophages or granuloma formation associated with the massive accumulation of Mac-2+ cells, respectively. These findings suggest that macrophages in these mice, which may be activated by M-CSF and may avoid Fas-mediated apoptosis, play a critical role as effector cells in the destruction of arterial wall.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3