Effect of the expression of DRαEβNOD molecule on the development of insulitis and diabetes in the non-obese diabetic (NOD) mouse

Author:

Yamane K12,Yamamoto K1,Yoshikawa Y3,Sasazuki T1

Affiliation:

1. Department of Genetics

2. First Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Kyushu University, Fukuoka, Japan

3. Diagnostic Laboratory, Medical Institute of Bioregulation

Abstract

SUMMARY Previous studies have shown that a transgenic I-Eα gene, the mouse homologue of human DRα gene, prevents the development of insulitis and hence of diabetes in NOD mice. To investigate the mechanism of this prevention, we generated two strains of NOD mice expressing DRαEβ molecule: DRα-24-NOD expressing DRαEβ molecule on thymic epithelial cells (TEC) and bone marrow-derived cells (BDC), and DRα-30-NOD expressing DRαEβ molecule only on the TEC, and these mice were monitored for disease development. Because the DRαEβ molecule reconstituted I-E controlled immune regulation, it would become clear which cell type, TEC or BDC, was responsible for the I-E-mediated disease protection. To our surprise, however, DRα-24-NOD developed insulitis and diabetes comparably to non-transgenic littermates. This suggested that the difference in structure between DRα and Eα molecules contributed to the difference in preventive effect on the development of insulitis and diabetes between DRα-24-NOD and Eα-NOD. In an analysis of the T cell proliferative responses to glutamic acid decarboxylase (GAD) 65-derived peptides which were known to be diabetogenic autoantigens, it was shown that DRα-24-NOD and NOD acquired comparable level of T cell response to GAD 509–528 but 5–10-fold higher response was observed in Eα-NOD. This suggested that I-ANOD and EαEβNOD molecules could present GAD 509–528 peptide to T cells, while DRαEβNOD could not. Furthermore, T cells from DRα transgenic mice showed proliferative response to antigen-presenting cells from Eα transgenic mice in primary mixed lymphocyte reaction. This also suggested that the EαEβ molecule does differ in structure and peptide binding from the DRαEβ molecule. Present data suggested a possibility that the T cell repertoire selection, or the T cell response to GAD 65 and/or other unknown antigens specifically mediated by I-E molecule, may contribute to the prevention of disease development in Eα-NOD.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3