Depletion of peritoneal CD5+ B cells has no effect on the course of Leishmania major infection in susceptible and resistant mice

Author:

BABAI B1,LOUZIR H1,CAZENAVE P -A2,DELLAGI K1

Affiliation:

1. Laboratory of Immunology (LI) (LAF 301), Institut Pasteur de Tunis, Tunis-Belvédère, Tunisia

2. Unité d'Immunochimie Analytique, Institut Pasteur, Paris, France

Abstract

SUMMARY The mouse peritoneal cavity contains a unique self-renewing population of B cells (B-1) derived from fetal liver precursors and mainly producing polyreactive antibodies. Since B-1 cells are a potential source of IL-10, it has been suggested that these cells may contribute to the susceptibility of BALB/c mice to Leishmania major infection by skewing the T helper cell network towards a Th2 phenotype. Accordingly, L. major infection of B cell-defective BALB/c Xid mice (lacking B-1 cells) induces less severe disease compared with controls. However, in addition to the lack of B-1 cells, the Xid immune deficiency is characterized by high endogenous interferon-gamma (IFN-γ) production. In the present study, the role of B-1 cells during L. major infection was investigated in mice experimentally depleted of peritoneal B-1 cells. Six weeks old C57Bl/6 and BALB/c mice were lethally irradiated and reconstituted with autologous bone marrow which allows systemic depletion of B-1 cells. Untreated BALB/c, C57Bl/6 as well as BALB/c Xid mice were used as controls. After reconstitution, mice were injected with L. major amastigotes and progression was followed using clinical, parasitological and immunological criteria. As previously reported, BALB/c Xid mice showed a significant reduction in disease progression. In contrast, despite the dramatic reduction of B-1 cells, B-1-depleted BALB/c mice showed similar or even worse disease progression compared with control BALB/c mice. No differences were found between B-1-depleted or control C57Bl/6 mice. Our data suggest that the B-1 cells do not contribute to the susceptibility of BALB/c mice to L. major infection.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3