Accelerated calcium influx and hyperactivation of neutrophils in chronic granulomatous disease

Author:

Tintinger G R1,Theron A J1,Steel H C1,Anderson R1

Affiliation:

1. Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Institute for Pathology, University of Pretoria, Pretoria, South Africa

Abstract

SUMMARY The relationship between activation of NADPH-oxidase, alterations in membrane potential and triggering of Ca2+ fluxes in human phagocytes has been investigated using neutrophils from four subjects with chronic granulomatous disease (CGD). Cytosolic Ca2+ and membrane potential were measured by spectrofluorimetry, and net efflux and influx of Ca2+ by radiometric procedures. Exposure of normal neutrophils to the chemotactic tripeptide, N-formyl-l-methionyl-l-leucyl-l-phenylalanine (FMLP; 1 μm) was accompanied by an abrupt increase in cytosolic Ca2+ coincident with membrane depolarization and efflux of the cation. These events terminated at around 30 s after the addition of FMLP and were followed by membrane repolarization and store-operated influx of Ca2+, both of which were superimposable and complete after about 5 min. Activation of CGD neutrophils was also accompanied by an increase in cytosolic Ca2+, which, in spite of an efficient efflux response, was prolonged in relation to that observed in normal cells. This prolonged increase in cytosolic Ca2+ in activated CGD neutrophils occurred in the setting of trivial membrane depolarization and accelerated influx of Ca2+, and was associated with hyperactivity of the cells according to excessive release of elastase and increased activity of phospholipase A2. Treatment of CGD neutrophils with the type 4 phosphodiesterase inhibitor, rolipram (1 μm) restored Ca2+ homeostasis and attenuated the increase in elastase release. These findings support the involvement of NADPH-oxidase in regulating membrane potential and Ca2+ influx in activated neutrophils, and may explain the disordered inflammatory responses and granuloma formation which are characteristic of CGD.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3