Novel mutations and defective protein kinase C activation of T-lymphocytes in ataxia telangiectasia

Author:

García-Pérez M A1,Allende L M1,Corell A1,Varela P1,Moreno A A1,Sotoca A1,Moreno A2,Paz-Artal E1,Barreiro E2,Arnaiz-Villena A1

Affiliation:

1. Department of Immunology, Spain

2. Department of Genetics, Hospital Universitario 12 de Octubre, Universidad Complutense, Madrid, Spain

Abstract

Summary Three ataxia telangiectasia (AT) patients have been characterized immunologically and molecularly. Patient 1 presents two nondescribed splicing mutations which affect exons 15 and 21 of the ATM gene. The maternal defect consists of a G > A transition in the first nucleotide of the intron 21 donor splicing site which results in a complete deletion of exon 21. The paternal mutation consists of an A > C transversion in the intron 14 acceptor splicing site which produces a partial skipping of exon 15. Two abnormal alternative transcripts were found, respectively, 17 and 41 nucleotides shorter. Patient 2 presents a homozygous genomic deletion of 28 nucleotides in the last exon of the gene. This deletion changes the normal reading frame after residue 3003 of the protein and introduces a premature stop codon at residue 3008 that could originate a truncated ATM protein. Patient 3, a compound heterozygote, presents a defect which consists of a G > A transition in the first nucleotide of intron 62 donor splicing site which results in a complete deletion of exon 62. The results obtained during a three year period in the proliferation assays show an impaired PMA (phorbol myristate acetate) activation in specific T lymphocyte activation pathways (CD69, CD26, CD28, CD3, PHA, PWM and Con A mediated) but not in others (CD2, ionomycin, and Ig surface receptor). The possible link among specific ATM mutations and abnormal immune responses is unknown.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3