The impact of platelet-activating factor (PAF)-like mediators on the functional activity of neutrophils: anti-inflammatory effects of human PAF-acetylhydrolase

Author:

Kuijpers T W12,Van Den BERG1 J M2,Tool A T J2,Roos D2

Affiliation:

1. Emma Children's Hospital, The Netherlands

2. Central Laboratory of the Netherlands Blood Transfusion Service (CLB) and Laboratory for Experimental and Clinical Immunology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands

Abstract

Summary Platelet-activating factor (PAF) is a proinflammatory agent in infectious and inflammatory diseases, partly due to the activation of infiltrating phagocytes. PAF exerts its actions after binding to a monospecific PAF receptor (PAFR). The potent bioactivity is reflected by its ability to activate neutrophils at picomolar concentrations, as defined by changes in levels of intracellular Ca2+ ([Ca2+]i), and induction of chemotaxis and actin polymerization at nanomolar concentration. The role of PAF in neutrophil survival is, however, less well appreciated. In this study, the inhibitory effects of synthetic PAFR-antagonists on various neutrophil functions were compared with the effect of recombinant human plasma-derived PAF-acetylhydrolase (rPAF-AH), as an important enzyme for PAF degradation in blood and extracellular fluids. We found that endogenously produced PAF (–like) substances were involved in the spontaneous apoptosis of neutrophils. At concentrations of 8 µg/ml or higher than normal plasma levels, rPAF-AH prevented spontaneous neutrophil apoptosis (21 ± 4% of surviving cells (mean ± SD; control) versus 62 ± 12% of surviving cells (mean ± SD; rPAF-AH 20 µg/ml); P < 0·01), during overnight cultures of 15 h. This effect depended on intact enzymatic activity of rPAF-AH and was not due to the resulting product lyso-PAF. The anti-inflammatory activity of rPAF-AH toward neutrophils was substantiated by its inhibition of PAF-induced chemotaxis and changes in [Ca2+]i. In conclusion, the efficient and stable enzymatic activity of rPAF-AH over so many hours of coculture with neutrophils demonstrates the potential for its use in the many inflammatory processes in which PAF (–like) substances are believed to be involved.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Reference46 articles.

1. Biochemistry of Platelet-activating Factor: a unique class of biologically active phospholipids;Snyder;FASEB J,1989

2. Platelet-activating factor: receptors and signal transduction;Chao;Biochem J,1993

3. The role of PAF in endotoxin-related disease;Kuijpers,1999

4. Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung;Honda;Nature,1991

5. Molecular cloning and expression of platelet-activating factor receptor from human leukocytes;Nakamura;J Biol Chem,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3