Response of in vivo protein synthesis in T lymphocytes and leucocytes to an endotoxin challenge in healthy volunteers

Author:

JANUSZKIEWICZ A1,LORÉ K2,ESSÉN P1,ANDERSSON B3,MCNURLAN M A4,GARLICK P J4,RINGDÉN O5,ANDERSSON J2,WERNERMAN J1

Affiliation:

1. Department of Anaesthesiology and Intensive Care

2. Centre for Infectious Medicine, Department of Medicine

3. Nova Medical Laboratories, Stockholm, Sweden

4. Department of Surgery, State University of New York, Stony Brook, NY, USA

5. Department of Clinical Immunology, Huddinge University Hospital, Karolinska Institutet, Stockholm

Abstract

Summary In vivo determination of protein synthesis in immune cells reflects metabolic activity and immunological activation. An intravenous injection of endotoxin to healthy volunteers was used as a human sepsis model, and in vivo protein synthesis of T lymphocytes and leucocytes was measured. The results were related to plasma concentrations of selected cytokines, peripheral cell counts and subpopulations of immune cells. The subjects (n = 8 + 8) were randomized to an endotoxin (4 ng/kg) or a saline group. In vivo protein synthesis was determined twice: before and 1–2·5 h after the endotoxin/saline injection. Protein synthesis decreased in isolated T lymphocytes, but increased in leucocytes. Plasma levels of TNF-α, IL-8, IL-6, IL-1 ra and IL-10 were elevated, whereas IL-2 and IFN-γ, produced predominantly by T lymphocytes, did not change in response to endotoxin. Neutrophils increased, whereas lymphocytes and monocytes decreased 2·5 h after the endotoxin injection. Flow cytometry revealed a drop in total CD3+ T lymphocytes and CD56+ natural killer cells, accompanied by an increase in CD15+ granulocytes. In summary, in vivo protein synthesis decreased in T lymphocytes, while the total leucocyte population showed a concomitant increase immediately after the endotoxin challenge. The changes in protein synthesis were accompanied by alterations in immune cell subpopulations and in plasma cytokine levels.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3