Random forest based pseudorandom sequences classification algorithm

Author:

Kozachok A. V., ,Spirin A. A.,Golembiovskaya O. M., ,

Abstract

Recently, the number of confidential data leaks caused by internal violators has increased. Since modern DLP-systems cannot detect and prevent information leakage channels in encrypted or compressed form, an algorithm was proposed to classify pseudo-random sequences formed by data encryption and compression algorithms. Algorithm for constructing a random forest was used. An array of the frequency of occurrence of binary subsequences of 9-bit length and statistical characteristics of the byte distribution of sequences was chosen as the feature space. The presented algorithm showed the accuracy of 0,99 for classification of pseudorandom sequences. The proposed algorithm will improve the existing DLP-systems by increasing the accuracy of classification of encrypted and compressed data.

Publisher

Tomsk State University of Control Systems and Radioelectronics (TUSUR)

Subject

Pharmacology (medical)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3