Generalized energy model of the open thermodynamic system “vehicle fuel tank”. Processes of non-stationary heat transfer with a variable fuel mass

Author:

Ter-Mkrtich’yan A. A.1,Glaviznin V. V.1,Mikerin N. A.1,Arabyan M. E.1,Tseytlin A. A.1

Affiliation:

1. Federal State Unitary Enterprise “Central Scientific Research Automobile and Automotive Engines Institute” (FSUE “NAMI”)

Abstract

Introduction (statement of the problem and relevance). While gasoline-powered vehicles generate a significant amount of hydrocarbons in the form of the fuel system emitted vapors, the main element of the system being the fuel tank, modern requirements for evaporative emission limits are significantly tightened. At the same time, the vaporization process parameters and the fuel vapor amount are determined by the dynamics of fuel heating in the tank under various modes of vehicle operation.The purpose of the research was to develop a “vehicle fuel tank” energy model, seeking to create an open thermodynamic system which can exchange matter and energy with the environment depending on the variable amount of fuel in the tank.Methodology and research methods. The analysis of heat flush connected to the fuel tank and taken away from it was being carried out. As a result of solving equations for open and closed thermodynamic systems, the parameters characterizing the thermal properties of the fuel tank were obtained.Scientific novelty and results. Additional complex parameters have been proposed, the main of which are: heat transfer of the tank; tank heat capacity; supplied heat flux; the rate of heat capacity change; tank emptying time; fuel heating acceleration factor; the maximum rate of change in temperature difference. To assess the heat and power properties of the fuel tank, an additional parameter of the sphere surface area ratio to the surface area of the same volume tank has been proposed, which allowed estimating the fuel tank heat transfer to the environment.Practical significance. Equations have been obtained that allow estimating the level of fuel temperature depending on the thermal properties and shape of the fuel tank in the absence and presence of fuel pump control.

Publisher

FSUE Central Scientific Research Automobile and Automotive Engines Institute (FSUE NAMI)

Reference12 articles.

1. Grigor’ev M.A., Zheltyakov V.T., Ter-Mkrtich’yan G.G., Terekhin A.N. [Modern vehicle engines and their prospects]. Avtomobil’naya promyshlennost’, 1996, no. 6, pp. 10–14. (In Russian)

2. Saykin A.M., Ter-Mkrtich’yan G.G., Karpukhin K.E., Pereladov A.S., Zhuravlev A.V., Yakunova E.A. [Ecological problems of modern transport vehicles including electromobiles]. Vestnik mashinostroeniya, 2017, no. 2, pp. 84–87. (In Russian)

3. Ter-Mkrtich’yan G.G. [Analysis of the vaporization processes in the vehicle fuel tank. New equation for determining the vapor amount]. Trudy NAMI, 2021, no. 2 (285), pp. 74–86. DOI: 10.51187/0135-3152-2021-2-74-86. (In Russian)

4. Ter-Mkrtich’yan G.G., Mikerin N.A., Glaviznin V.V., Balashov D.Yu., Arabyan M.E. [The thermodynamic system “fuel tank of a vehicle” energy model. Processes of unsteady heat transfer at constant fuel mass]. Trudy NAMI, 2020, no. 4 (283), pp. 82–93. DOI: 10.51187/0135-31522020-4-82-93. (In Russian)

5. Reddy S.R. Mathematical Models for Predicting Vehicle Refuelling Vapour Generation. SAE 2010 World Congress & Exhibition, 2010.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3