Screening and profiling of mercury-resistant Azotobacter isolated from gold mine tailing in Pongkor, West Java

Author:

Suryatmana Pujawati,Handayani Sri,Bang Sunbaek,Hindersah Reginawanti

Abstract

Mercury (Hg) is a hazardous pollutant produced during the amalgamation of gold extraction. The environmental problems related to improper Hg waste management have become progressively concerning. Hg contamination in environments can be removed by using bioremediation technology. Utilizing Hg-resistant (HgR) microorganisms in Hg bioremediation is a crucial strategy. Azotobacter is one of the potential microbes for Hg bioremediation bioagent due to exopolysaccharides synthesis that binds the heavy metal. The study's main objective was to select and profile a novel Hg-resistant Azotobacter isolated from heavily Hg-contaminated soil and tailing of artisanal and small-scale gold in Pongkor area, West Java, Indonesia. The completely randomized design was used for profiling Azotobacter-HgR and included Hg values of 0, 1, 10, 100, 200, and 400 mg/L. Further, Azotobacter isolate bioassay steps included soil contaminated with Hg, soil contaminated with Hg + Azotobacter sp. S6.a, soil contaminated with Hg + consortium. The profiling results revealed that four Hg-resistant isolates were Azotobacter sp. S5, Azotobacter sp. S6, Azotobacter sp. S6.a, and Azotobacter sp. S9. More importantly, Azotobacter sp. S5 followed by Azotobacter sp. S6.a was found to be the most resistant to Hg exposure at a concentration of 400 mg/L. The Azotobacter sp. S9. produced the lowest EPS, but had the highest activity of nitrogenase and organic acid production. Meanwhile, Azotobacter sp. S6.a. produced the highest EPS. Isolate S5 showed the highest potential as a resistant PGPR-Hg isolate for enhancing the growth of sorghum in Hg-contaminated soil. Sorghum plants accumulate Hg from the soil in the roots but not in the shoots. Present findings suggest that these two isolates have the potential to be used as biological agents to rehabilitate Hg-contaminated soil in Pongkor area.

Publisher

Faculty of Agriculture, Brawijaya University

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Pollution,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3