Utilization of Sentinel-1 satellite imagery data to support land subsidence analysis in DKI Jakarta, Indonesia

Author:

Ardha Mohammad,Suhadha Argo Galih,Julzarika Atriyon,Yulianto Fajar,Yudhatama Dipo,Darwista Rofifatuz Zulfa

Abstract

Land subsidence had been a significant problem in DKI Jakarta and Semarang, with at least 20 kilometres of roads affected. Repairing them will require at least US $ 1 million per kilometre. Land subsidence monitoring has been carried out using terrestrial methods (GPS and levelling), which are believed to have a high degree of accuracy. The high accuracy of the terrestrial method results in a lack of precision over a large area. On the other hand, remote sensing technology as a non-terrestrial method has developed to monitor land subsidence which can produce high precision over a large area. This study aimed to test the Sentinel-1 satellite data using the Differential Interferometric Synthetic Aperture Radar (DInSAR) method in monitoring land subsidence in DKI Jakarta. DInSAR is a method in Remote Sensing that utilizes radar sensors to analyze the phase differences of a SAR data pair that have different times of capture and have been catalogued to obtain displacement along the area of collection. The results showed that the North Jakarta area experienced the highest land subsidence in the entire Jakarta area. The annual average rate from 2017-2019 is 3.4 cm. The value of 3.4 cm is the average value of all samples in the North Jakarta area. The second area where high land subsidence is West Jakarta, where the maximum amount value of subsidence is 2.8 cm. The accuracy-test results with the MONAS test point showed that the difference between field data and DInSAR results was ± 6.5 cm. The results of this research indicate that the DInSAR method is quite capable of describing land subsidence in the DKI Jakarta area with a relatively good level of precision.

Publisher

International Research Centre for the Management of Degraded and Mining Lands

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Pollution,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3