A comprehensive survey exploring the application of machine learning algorithms in the detection of land degradation

Author:

Hediyalad GangammaORCID,Ashoka KORCID,Hegade Govardhan,Gaonkar Pratibha Ganapati,Pathan Azizkhan F,Malagatti Pratibhaa R

Abstract

Early and reliable detection of land degradation helps policymakers to take strict action in more vulnerable areas by making strong rules and regulations in order to achieve sustainable land management and conservation. The detection of land degradation is carried out to identify desertification processes using machine learning techniques in different geographical locations, which are always a challenging issue in the global field. Due to the significance of the detection of land degradation, this article provides an exhaustive review of the detection of land degradation using machine learning algorithms. Initially, the current status of land degradation in India is presented, along with a brief discussion on the overview of widely used factors, evaluation parameters, and algorithms used. Consequently, merits and demerits related to machine learning-based land degradation identification are presented. Additionally, solutions are prescribed in order to reduce existing problems in the detection of land degradation. Since one of the major objectives is to explore the future perspectives of machine learning-based land degradation detection, areas including the application of remote sensing, mapping, optimum features, and algorithms have been broadly discussed. Finally, based on a critical evaluation of existing related studies, the architecture of the machine learning-based desertification process has been proposed. This technology can fulfill the research challenges in the detection of land degradation and computation difficulties in the development of models for the detection of land degradation.

Publisher

Faculty of Agriculture, Brawijaya University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3