Optimization of adaptive and sustainable gold ore grinding processes for better environmental and land conditions in the small-scale gold mining sector in Indonesia

Author:

Nurjaman Dadan MohamadORCID,Titah Harmin Sulistiyaning,Kawigraha Adji,Purwanti Ipung Fitri,Hidayat Wahyu

Abstract

The artisanal and small-scale gold mining (ASGM) sector largely relies on mercury in gold processing, posing potential environmental contamination, health issues, and land degradation. In the villages of Tatelu and Talawaan, ASGM operations, guided by local knowledge and resources, have transitioned to using cyanide leaching for gold processing sustainably. These operations utilize andesitic stones from river deposits as grinding media in the grinding process. However, the cyanide leaching results were not optimal, with a gold recovery below 60%. This leaves significant amounts of gold in the waste, necessitating further processing and the incomplete treatment of free cyanide waste. The suboptimal gold recovery in cyanide leaching is attributed to the inadequate grain size liberation during grinding. This study optimized grinding by comparing andesitic stone grinding media with steel balls and rods. The findings indicate that to achieve a grain size of 75% passing 74 um, grinding with andesitic stones takes 4 hours, while steel rods and balls take 3 hours. For a grain size of 75% passing 44 um, grinding with andesitic stones, steel balls, and rods requires 6 hours. With more precise process parameters, locally available andesitic stones can be an effective grinding medium to optimize gold recovery. In line with optimizing gold recovery, this will enhance ASGM's revenue, encouraging the adoption of waste management practices to alleviate environmental impact, health risks, and land degradation. This aligns with the promotion of sustainable practices within the ASGM sector.

Publisher

Faculty of Agriculture, Brawijaya University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3