Author:
Yasin Emad H. E.,Sharif Mahir M.,Yahia Mahadi Y. A.,Othman Aladdin Y.,Ibrahim Ashraf O.,Kheiry Manal A.,Musa Mazin
Abstract
Maintaining productive farmland necessitates precise crop mapping and identification. While satellite remote sensing makes it possible to generate such maps, there are still issues to resolve, such as how to choose input data and the best classifier algorithm, especially in areas with scarce field data. Accurate assessments of the land used for farming are a crucial part of national food supply and production accounting in many African countries, and to this end, remote sensing tools are being increasingly put to use. The aim of this study was to assess the potentiality of Sentinel-2 to distinguish and discriminate crop species in the study area and constraints on accurately mapping cropping patterns in the winter season in River Nile and Northern State, Sudan. The research utilized Sentinel-2 Normalized Different Vegetation Index (NDVI) at 10 m resolution, unsupervised and supervised classification method with ground sample and accuracy assessment. The results of the study found that the signatures of grain sorghum, wheat, okra, Vicia faba, alfalfa, corn, haricot, onion, potato, tomato, lupine, tree cover, and garlic have clear distinctions, permitting an overall accuracy of 87.38%, with trees cover, onion, wheat, potato, garlic, alfalfa, tomato, lupine and Vicia faba achieving more than 87% accuracy. Major mislabeling problems occurred primarily in irrigated areas for grain sorghum, okra, corn, and haricot, in wooded areas comprised of small parcels of land. The research found that high-resolution temporal images combined with ground data had potential and utility for mapping cropland at the field scale in the winter.
Publisher
Faculty of Agriculture, Brawijaya University