Towards Automated and Optimal IIoT Design

Author:

Ebraheem Ali,Ivanov Ilya

Abstract

In today’s world, the Internet of Things has become an integral part of our lives. The increasing number of intelligent devices and their pervasiveness has made it challenging for developers and system architects to plan and implement systems of Internet of Things and Industrial Internet of Things effectively. The primary objective of this work is to automate the design process of Industrial Internet of Things systems while optimizing the quality of service parameters, battery life, and cost. To achieve this goal, a general four-layer fog-computing model based on mathematical sets, constraints, and objective functions is introduced. This model takes into consideration the various parameters that affect the performance of the system, such as network latency, bandwidth, and power consumption. The Non-dominated Sorting Genetic Algorithm II is employed to find Pareto optimal solutions, while the Technique for Order of Preference by Similarity to Ideal Solution is used to identify compromise solutions on the Pareto front. The optimal solutions generated by this approach represent servers, communication links, and gateways whose information is stored in a database. These resources are chosen based on their ability to enhance the overall performance of the system. The proposed strategy follows a three-stage approach to minimize the dimensionality and reduce dependencies while exploring the search space. Additionally, the convergence of optimization algorithms is improved by using a biased initial population that exploits existing knowledge about how the solution should look. The algorithms used to generate this initial biased population are described in detail. To illustrate the effectiveness of this automated design strategy, an example of its application is presented.

Publisher

SPIIRAS

Reference34 articles.

1. Официальный сайт Microsoft Azure. URL: https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-the-cloud (дата обращения: 02.01.2023).

2. Basir R., Qaisar S., Ali M., Aldwairi M., Ashraf M.I., Mahmood A., Gidlund M. Fog Computing Enabling Industrial Internet of Things: State-of-the-Art and Research Challenges. Sensors. 2019. vol. 19(21). no. 4807.

3. Цвиркун А.Д. Основы синтеза структуры сложных систем. М.: Наука, 1982. 200 с.

4. Цвиркун А.Д., Акинфиев В.К., Соловьев М.М. Моделирование развития крупномасштабных систем: (На примере топливно-энергетических отраслей и комплексов). М.: Экономика, 1983. 176 с.

5. Акинфиев В.К., Цвиркун А.Д. Методы и инструментальные средства управления развитием компаний со сложной структурой активов. М.: ИПУ РАН, 2020. 307 с.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3