Algorithm for Optimization of Keyword Extraction Based on the Application of a Linguistic Parser

Author:

Kravchenko Daniil,Kravchenko Yury,Mansour Ali Mahmoud,Mohammad Juman,Pavlov Nikolai

Abstract

This article presents an analytical comparison between constituency parsing and dependency parsing – two types of parsing used in the field of natural language processing (NLP). The study introduces an algorithm to enhance keyword extraction, employing the noun phrase extraction feature of the parser to filter out unsuitable phrases. This algorithm is implemented using three different parsers: Spacy, AllenNLP and Stazna. The effectiveness of this algorithm was compared with two popular methods (Yake, Rake) on a dataset of English texts. Experimental results show that the proposed algorithm with the SpaCy parser is superior to other keyword extraction algorithms in terms of accuracy and speed. For the AllenNLP and Stanza parsers, our algorithm is also more accurate, but requires much longer execution time. The results obtained allow us to evaluate in more detail the advantages and disadvantages of the parsers studied in the work, as well as to determine directions for further research. The running time of the SpaCy parser is significantly less than the other two parsers because parsers that use transitions for deterministic or machine-learned set of actions to build the dependency tree step by step. They are typically faster and require less memory than graph-based parsers, making them more efficient for parsing large amounts of text. On the other hand, AllenNLP and Stanza use graph-based parsing models that rely on millions of features, which limits their ability to generalize and slows down the speed of analysis compared to transition-based parsers. The task of achieving a balance between the accuracy and speed of a linguistic parser is an open topic that requires further research due to the importance of this problem for improving the efficiency of text analysis, especially in applications that require real-time accuracy. To this end, the authors plan to conduct further research into possible solutions to achieve this balance.

Publisher

SPIIRAS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3