Classification of Spatial Temporal Patterns Based on Neuromorphic Networks

Author:

Gundelakh Filipp,Stankevich Lev

Abstract

This work is devoted to the problems of developing neuromorphic classifiers of spatiotemporal patterns, as well as their application in neurointerfaces. Classifiers of spatiotemporal patterns based on neural networks, support vector machines, deep neural networks, and Riemannian geometry are considered. A comparative study of these classifiers is carried out in the plane of the accuracy of multiclass recognition of electroencephalographic signals showing time-dependent bioelectrical activity in different areas of the brain during the imagination of different movements. It is shown that such classifiers can provide an accuracy of 60-80% when recognizing from two to four classes of imaginary movements. A new type of classifier based on a neuromorphic network, based on the biosimilar neurons built on the Izhikevich model, is proposed. The network processes input spike sequences and generates pulse streams of different frequencies at the outputs. The network is trained using the Supervised STDP algorithm based on labeled information containing examples of the correct recognition of the required pattern classes. The recognized pattern class is determined by the maximum frequency of the output sequence. The neuromorphic classifier showed an average classification accuracy of 90% for 4 classes of imaginary commands and a maximum of 95%. By modeling the robot control task in the virtual environment it is shown that such accuracy is sufficient for the effective use of the classifier as part of a non-invasive brain-computer interface for non-contact control of robotic devices.

Publisher

SPIIRAS

Reference27 articles.

1. Лисовский А.Л. Применение нейросетевых технологий для разработки систем управления. Стратегические решения и риск-менеджмент. 2020. Т. 11. № 4. С. 378–389. DOI: 10.17747/2618-947X-923.

2. Благовещенский В.Г., Благовещенский И.Г., Благовещенская М.М., Аднодворцев А.М., Головин В.В. Управление технологическими процессами производства кондитерских изделий с использованием нейросетевого регулятора. Труды Всероссийской НТК «Информатизация и автоматизация в пищевой промышленности». Курск: Изд-во ЗАО «Университетские книги», 2022. С. 78–83.

3. Ульев А.Д., Розалиев В.Л., Заболеева-Зотова А.В., Орлова Ю.А. Интеллектуальная система видеонаблюдения за поведением человека // Искусственный интеллект и принятие решений. 2020. № 4. С. 21–32. DOI: 10.14357/20718594200403.

4. Богуш Р.П., Захарова И.Ю. Алгоритм сопровождения людей на видеопоследовательностях с использованием свёрточных нейронных сетей для видеонаблюдения внутри помещений // Компьютерная оптика. 2020. Т. 44. № 1. С. 109–116. DOI: 10.18287/2412-6179-CO-565.

5. Brunner C., Birbaumer N., Blankertz B., Guger C., Kubler A., Mattia D., del R. Millan J., Miralles F., Nijholt A., Opisso E., Ramsey N., Salomon P., Muller-Putz G.R. BNCI Horizon 2020: towards a roadmap for the BCI community // Brain-Computer Interfaces. 2015. vol. 2. no. 1. pp. 1–10. DOI: 10.1080/2326263X.2015.1008956.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3