Author:
Gundelakh Filipp,Stankevich Lev
Abstract
This work is devoted to the problems of developing neuromorphic classifiers of spatiotemporal patterns, as well as their application in neurointerfaces. Classifiers of spatiotemporal patterns based on neural networks, support vector machines, deep neural networks, and Riemannian geometry are considered. A comparative study of these classifiers is carried out in the plane of the accuracy of multiclass recognition of electroencephalographic signals showing time-dependent bioelectrical activity in different areas of the brain during the imagination of different movements. It is shown that such classifiers can provide an accuracy of 60-80% when recognizing from two to four classes of imaginary movements. A new type of classifier based on a neuromorphic network, based on the biosimilar neurons built on the Izhikevich model, is proposed. The network processes input spike sequences and generates pulse streams of different frequencies at the outputs. The network is trained using the Supervised STDP algorithm based on labeled information containing examples of the correct recognition of the required pattern classes. The recognized pattern class is determined by the maximum frequency of the output sequence. The neuromorphic classifier showed an average classification accuracy of 90% for 4 classes of imaginary commands and a maximum of 95%. By modeling the robot control task in the virtual environment it is shown that such accuracy is sufficient for the effective use of the classifier as part of a non-invasive brain-computer interface for non-contact control of robotic devices.
Reference27 articles.
1. Лисовский А.Л. Применение нейросетевых технологий для разработки систем управления. Стратегические решения и риск-менеджмент. 2020. Т. 11. № 4. С. 378–389. DOI: 10.17747/2618-947X-923.
2. Благовещенский В.Г., Благовещенский И.Г., Благовещенская М.М., Аднодворцев А.М., Головин В.В. Управление технологическими процессами производства кондитерских изделий с использованием нейросетевого регулятора. Труды Всероссийской НТК «Информатизация и автоматизация в пищевой промышленности». Курск: Изд-во ЗАО «Университетские книги», 2022. С. 78–83.
3. Ульев А.Д., Розалиев В.Л., Заболеева-Зотова А.В., Орлова Ю.А. Интеллектуальная система видеонаблюдения за поведением человека // Искусственный интеллект и принятие решений. 2020. № 4. С. 21–32. DOI: 10.14357/20718594200403.
4. Богуш Р.П., Захарова И.Ю. Алгоритм сопровождения людей на видеопоследовательностях с использованием свёрточных нейронных сетей для видеонаблюдения внутри помещений // Компьютерная оптика. 2020. Т. 44. № 1. С. 109–116. DOI: 10.18287/2412-6179-CO-565.
5. Brunner C., Birbaumer N., Blankertz B., Guger C., Kubler A., Mattia D., del R. Millan J., Miralles F., Nijholt A., Opisso E., Ramsey N., Salomon P., Muller-Putz G.R. BNCI Horizon 2020: towards a roadmap for the BCI community // Brain-Computer Interfaces. 2015. vol. 2. no. 1. pp. 1–10. DOI: 10.1080/2326263X.2015.1008956.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献