Random Survival Forests Incorporated by the Nadaraya-Watson Regression

Author:

Utkin LevORCID,Konstantinov Andrei

Abstract

An attention-based random survival forest (Att-RSF) is presented in the paper. The first main idea behind this model is to adapt the Nadaraya-Watson kernel regression to the random survival forest so that the regression weights or kernels can be regarded as trainable attention weights under important condition that predictions of the random survival forest are represented in the form of functions, for example, the survival function and the cumulative hazard function. Each trainable weight assigned to a tree and a training or testing example is defined by two factors: by the ability of corresponding tree to predict and by the peculiarity of an example which falls into a leaf of the tree. The second main idea behind Att-RSF is to apply the Huber's contamination model to represent the attention weights as the linear function of the trainable attention parameters. The Harrell's C-index (concordance index) measuring the prediction quality of the random survival forest is used to form the loss function for training the attention weights. The C-index jointly with the contamination model lead to the standard quadratic optimization problem for computing the weights, which has many simple algorithms for its solution. Numerical experiments with real datasets containing survival data illustrate Att-RSF.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Process-Semantic Analysis of Words and Texts;Artificial Intelligence in Models, Methods and Applications;2023

2. Improved Anomaly Detection by Using the Attention-Based Isolation Forest;Algorithms;2022-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3