Methodology for Ensuring a Comfortable Microclimate State in a Smart Home Using an Ensemble of Fuzzy Artificial Neural Networks

Author:

Mozohin AndreyORCID

Abstract

Analysis of the application of smart home technology indicates an insufficient level of controllability of its infrastructure, which leads to excessive consumption of energy and information resources. The problem of managing the digital infrastructure of human living space, is associated with a large number of highly specialized solutions for home automation, which complicate the management process. Smart home is considered as a set of independent cyber-physical devices aimed at achieving its goal. For coordinated work of cyber-physical devices it is proposed to provide their joint work through a single information center. Simulation of device operation modes in a digital environment preserves the resource of physical devices by making a virtual calculation for all possible variants of interaction of devices between themselves and the physical environment. A methodology for controlling the microclimate of a smart home using an ensemble of fuzzy artificial neural networks is developed, with the example of joint use of air conditioning, ventilation and heating. The neural network algorithm allows you to monitor the parameters of the physical environment, predict the modes of cyber-physical devices and generate control signals for each of them, ensuring the joint operation of devices with minimal resource consumption and information traffic. A variant of practical implementation of a smart home climate control system on the example of a multifunctional educational computer class is proposed. Hybrid neural networks of air conditioning, ventilation and heating systems were developed. The testing of the microclimate control system of a multifunctional university classroom using hybrid neural networks was carried out, a programmable logic controller of domestic production was used as a control device. The goal of management based on cooperating cyber-physical devices is to achieve a minimum of power and information traffic when they work together.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3