Context-Based Rider Assistant System for Two Wheeled Self-Balancing Vehicles

Author:

Kim Jeyeon,Sato Kenta,Hashimoto Naohisa,Kashevnik Alexey,Tomita Kohji,Miyakoshi Seiichi,Takinami Yusuke,Matsumoto Osamu,Boyali Ali

Abstract

Personal mobility devises become more and more popular last years. Gyroscooters, two wheeled self-balancing vehicles, wheelchair, bikes, and scooters help people to solve the first and last mile problems in big cities. To help people with navigation and to increase their safety the intelligent rider assistant systems can be utilized that are used the rider personal smartphone to form the context and provide the rider with the recommendations. We understand the context as any information that characterize current situation. So, the context represents the model of current situation. We assume that rider mounts personal smartphone that allows it to track the rider face using the front-facing camera. Modern smartphones allow to track current situation using such sensors as: GPS / GLONASS, accelerometer, gyroscope, magnetometer, microphone, and video cameras. The proposed rider assistant system uses these sensors to capture the context information about the rider and the vehicle and generates context-oriented recommendations. The proposed system is aimed at dangerous situation detection for the rider, we are considering two dangerous situations: drowsiness and distraction. Using the computer vision methods, we determine parameters of the rider face (eyes, nose, mouth, head pith and rotation angles) and based on analysis of this parameters detect the dangerous situations. The paper presents a comprehensive related work analysis in the topic of intelligent driver assistant systems and recommendation generation, an approach to dangerous situation detection and recommendation generation is proposed, and evaluation of the distraction dangerous state determination for personal mobility device riders.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Computer Networks and Communications,Control and Systems Engineering,Control and Systems Engineering,Applied Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3