Data Partitioning and Asynchronous Processing to Improve the Embedded Software Performance on Multicore Processors

Author:

Bui Phuc,Le Minh,Hoang Binh,Ngoc Nguyen,Pham Huong

Abstract

Nowadays, ensuring information security is extremely inevitable and urgent. We are also witnessing the strong development of embedded systems, IoT. As a result, research to ensure information security for embedded software is being focused. However, studies on optimizing embedded software on multi-core processors to ensure information security and increase the performance of embedded software have not received much attention. The paper proposes and develops the embedded software performance improvement method on multi-core processors based on data partitioning and asynchronous processing. Data are used globally to be retrieved by any threads. The data are divided into different partitions, and the program is also installed according to the multi-threaded model. Each thread handles a partition of the divided data. The size of each data portion is proportional to the processing speed and the cache size of the core in the multi-core processor. Threads run in parallel and do not need synchronization, but it is necessary to share a general global variable to check the executing status of the system. Our research on embedded software is based on data security, so we have tested and assessed the method with several block ciphers like AES, DES, etc., on Raspberry PI3. The average performance improvement rate achieved was 59.09%.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3