Fuzzy Logic Approaches in the Task of Object Edge Detection

Author:

Bobyr MaksimORCID,Arkhipov AlexanderORCID,Gorbachev SergeyORCID,Cao JindeORCID,Bhattacharyya SiddharthaORCID

Abstract

The task of reducing the computational complexity of contour detection in images is considered in the article. The solution to the task is achieved by modifying the Canny detector and reducing the number of passes through the original image. In the first case, two passes are excluded when determining the adjacency of the central pixel with eight adjacent ones in a frame of size 3х3. In the second case, three passes are excluded, two as in the first case and the third one necessary to determine the angle of gradient direction. This passage is provided by a combination of fuzzy rules. The goal of the work is to increase the performance of computational operations in the process of detecting the edges of objects by reducing the number of passes through the original image. The process of edge detection is carried out by some computational operations of the Canny detector with the replacement of the most complex procedures. In the proposed methods, fuzzification of eight input variables is carried out after determining the gradient and the angle of its direction. The input variables are the gradient difference between the central and adjacent cells in a frame of size 3х3. Then a base of fuzzy rules is built. In the first method, four fuzzy rules and one pass are excluded depending on the angle of gradient direction. In the second method, sixteen fuzzy rules themselves set the angle of the gradient direction, while eliminating two passes along the image. The gradient difference between the central cell and adjacent cells makes it possible to take into account the shape of the gradient distribution. Then, based on the center of gravity method, the resulting variable is defuzzified. Further use of fuzzy a-cut makes it possible to binarize the resulting image with the selection of object edges on it. The presented experimental results showed that the noise level depends on the value of the a-cut and the parameters of the labels of the trapezoidal membership functions. The software was developed to evaluate fuzzy edge detection methods. The limitation of the two methods is the use of piecewise-linear membership functions. Experimental studies of the performance of the proposed edge detection approaches have shown that the time of the first fuzzy method is 18% faster compared to the Canny detector and 2% faster than the second fuzzy method. However, during the visual assessment, it was found that the second fuzzy method better determines the edges of objects.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Pathfinding Algorithms for Mobile Robots Movement;Advances in Intelligent Systems and Computing;2024

2. Algorithm for Creating 3d Scenes of Recognized Objects from Depth Maps;Proceedings of the Southwest State University;2023-12-19

3. Fuzzy-logic Color Recognition System Using a Fast Defuzzifier;Proceedings of the Southwest State University;2023-03-25

4. Modeling the Automating Process of the Creation, Checking and Updating Texts of Contracts;Proceedings of the Southwest State University;2023-02-13

5. Vectorization Method of Satellite Images Based on Their Decomposition by Topological Features;Informatics and Automation;2023-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3