Performance Analysis of Concatenated Coding to Increase the Endurance of Multilevel NAND Flash Memory

Author:

Trofimov Andrey,Taubin Feliks

Abstract

The increasing storage density of modern NAND flash memory chips, achieved both due to scaling down the cell size, and due to the increasing number of used cell states, leads to a decrease in data storage reliability, namely, error probability, endurance (number of P/E cycling) and retention time. Error correction codes are often used to improve the reliability of data storage in multilevel flash memory. The effectiveness of using error correction codes is largely determined by the model accuracy that exhibits the basic processes associated with writing and reading data. The paper describes the main sources of disturbances for a flash cell that affect the threshold voltage of the cell in NAND flash memory, and represents an explicit form of the threshold voltage distribution. As an approximation of the obtained threshold voltage distribution, a Normal-Laplace mixture model was shown to be a good fit in multilevel flash memories for a large number of rewriting cycles. For this model, a performance analysis of the concatenated coding scheme with an outer Reed-Solomon code and an inner multilevel code consisting of binary component codes is carried out. The performed analysis makes it possible to obtain tradeoffs between the error probability, storage density, and the number of P/E cycling. The resulting tradeoffs show that the considered concatenated coding schemes allow, due to a very slight decrease in the storage density, to increase the number of P/E cycling up to 2–2.5 times than their nominal endurance specification while maintaining the required value of the bit error probability.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3