Machine-Synthesized Control of Nonlinear Dynamic Object Based on Optimal Positioning of Equilibrium Points

Author:

Shmalko Elizabeth

Abstract

When solving an optimal control problem with both direct and indirect approaches, the main technique is to transfer the optimal control problem from the class of infinite-dimensional optimization to a finite-dimensional one. However, with all these approaches, the result is an open-loop program control that is sensitive to uncertainties, and for the implementation of which in a real object it is necessary to build a stabilization system. The introduction of the stabilization system changes the dynamics of the object, which means that the optimal control and the optimal trajectory should be calculated for the object already taking into account the stabilization system. As a result, it turns out that the initial optimal control problem is complex, and often the possibility of solving it is extremely dependent on the type of object and functionality, and if the object becomes more complex due to the introduction of a stabilization system, the complexity of the problem increases significantly and the application of classical approaches to solving the optimal control problem turns out to be time-consuming or impossible. In this paper, a synthesized optimal control method is proposed that implements the designated logic for developing optimal control systems, overcoming the computational complexity of the problem posed through the use of modern machine learning methods based on symbolic regression and evolutionary optimization algorithms. According to the approach, the object stabilization system is first built relative to some point, and then the position of this equilibrium point becomes a control parameter. Thus, it is possible to translate the infinite-dimensional optimization problem into a finite-dimensional optimization problem, namely, the optimal location of equilibrium points. The effectiveness of the approach is demonstrated by solving the problem of optimal control of a mobile robot.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural Network Model for Constructing Feedback in Nonlinear Control Systems Based on Asymptotic Methods and the SDRE Approach;2024 International Russian Smart Industry Conference (SmartIndustryCon);2024-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3