Comparison of Two Objects Classification Techniques using Hidden Markov Models and Convolutional Neural Networks

Author:

Sarmiento Carlos,Savage Jesus

Abstract

This paper presents a comparison between discrete Hidden Markov Models and Convolutional Neural Networks for the image classification task. By fragmenting an image into sections, it is feasible to obtain vectors that represent visual features locally, but if a spatial sequence is established in a fixed way, it is possible to represent an image as a sequence of vectors. Using clustering techniques, we obtain an alphabet from said vectors and then symbol sequences are constructed to obtain a statistical model that represents a class of images. Hidden Markov Models, combined with quantization methods, can treat noise and distortions in observations for computer vision problems such as the classification of images with lighting and perspective changes.We have tested architectures based on three, six and nine hidden states favoring the detection speed and low memory usage. Also, two types of ensemble models were tested. We evaluated the precision of the proposed methods using a public domain data set, obtaining competitive results with respect to fine-tuned Convolutional Neural Networks, but using significantly less computing resources. This is of interest in the development of mobile robots with computers with limited battery life, but requiring the ability to detect and add new objects to their classification systems.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiview Object and View Sequence Recognition using Hidden Markov Models;2022 IEEE 18th International Conference on Automation Science and Engineering (CASE);2022-08-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3