Experimental Study of Language Models of "Transformer" in the Problem of Finding the Answer to a Question in a Russian-Language Text
Author:
Galeev DenisORCID, Panishchev VladimirORCID
Abstract
The aim of the study is to obtain a more lightweight language model that is comparable in terms of EM and F1 with the best modern language models in the task of finding the answer to a question in a text in Russian. The results of the work can be used in various question-and-answer systems for which response time is important. Since the lighter model has fewer parameters than the original one, it can be used on less powerful computing devices, including mobile devices. In this paper, methods of natural language processing, machine learning, and the theory of artificial neural networks are used. The neural network is configured and trained using the Torch and Hugging face machine learning libraries. In the work, the DistilBERT model was trained on the SberQUAD dataset with and without distillation. The work of the received models is compared. The distilled DistilBERT model (EM 58,57 and F1 78,42) was able to outperform the results of the larger ruGPT-3-medium generative network (EM 57,60 and F1 77,73), despite the fact that ruGPT-3-medium had 6,5 times more parameters. The model also showed better EM and F1 metrics than the same model, but to which only conventional training without distillation was applied (EM 55,65, F1 76,51). Unfortunately, the resulting model lags further behind the larger robert discriminative model (EM 66,83, F1 84,95), which has 3,2 times more parameters. The application of the DistilBERT model in question-and-answer systems in Russian is substantiated. Directions for further research are proposed.
Subject
Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems
Reference28 articles.
1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., Polosukhin, I. Attention is all you need // Advances in Neural Information Processing Systems 30. 2017. pp. 5998-6008. 2. Yang Z., Keung J., Yu X., Gu X., Wei Z., Ma X., Zhang M. A Multi-Modal Transformer-based Code Summarization Approach for Smart Contracts // The 2021 International Conference on Program Comprehension. 2021. pp. 1-12. 3. Juraska J., Walker M. Attention Is Indeed All You Need: Semantically Attention-Guided Decoding for Data-to-Text NLG // Proceedings of the 14th International Conference on Natural Language Generation. 2021. pp. 416-431. 4. Lewis M., Liu Y., Goyal N., Ghazvininejad M., Mohamed A., Levy O., Stoyanov V., Zettlemoyer L. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension // Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020. pp. 7871-7880. 5. Raffel C., Shazeer N., Roberts A., Lee K., Narang S., Matena M., Zhou Y., Li W., Liu P.J. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer // Journal of Machine Learning Research, Volume 21. 2020. pp .1-67.
|
|