Kalman Filter for a Particular Class of Dynamic Object Images

Author:

Soifer Victor,Fursov Vladimir,Kharitonov Sergey

Abstract

We discuss the problem of estimating the state of a dynamic object by using observed images generated by an optical system. The work aims to implement a novel approach that would ensure improved accuracy of dynamic object tracking using a sequence of images. We utilize a vector model that describes the object image as a limited number of vertexes (reference points). Upon imaging, the object of interest is assumed to be retained at the center of each frame, so that the motion parameters can be considered as projections onto the axes of a coordinate system matched with the camera's optical axis. The novelty of the approach is that the observed parameters (the distance along the optical axis and angular attitude) of the object are calculated using the coordinates of specified points in the object images. For estimating the object condition, a Kalman-Bucy filter is constructed on the assumption that the dynamic object motion is described by a set of equations for the translational motion of the center of mass along the optical axis and variations in the angular attitude relative to the image plane. The efficiency of the proposed method is illustrated by an example of estimating the object's angular attitude.

Publisher

SPIIRAS

Reference20 articles.

1. Laplante P.A., Neill C.J. A class of Kalman filters for real-time image processing // Proceedings of the Real-Time Imaging VII conference. Santa Clara: SPIE, 2003. pp. 22–29.

2. Schneider F., Easterbrook S.M., Callahan J.R., Holzmann G.J. Validating requirements for fault tolerant systems using model checking // Proceedings of the Third IEEE International Symposium on Requirements Engineering: RE'98. 1998. pp. 4–13.

3. Biemond J., Riesek J., Gerbrands J. A fast Kalman filter for images degraded by both blur and noise // IEEE Transactions on Acoustics, Speech, and Signal Processing. 1983. vol. 31. no. 5. pp. 1248–1256.

4. Xie X., Sudhakar R., Zhuang H. Real-time eye feature tracking from a video image sequence using Kalman Filter // IEEE Transactions on Systems, Man, and Cybernetics 1995. vol. 25. no. 12. pp. 1568–1577.

5. Lippiello V., Siciliano B., Villani L. A new method of image features pre-selection for real-time pose estimation based on Kalman filter // Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 2002. vol. 1. pp. 372–377.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3