Применение гармонических полуволн для автоматизации управления высокоскоростными поездами

Author:

Mayorov Boris

Abstract

The emergency braking processes in the European Train Control System (ETCS) of high-speed trains are associated with stepwise regulation of acceleration (deceleration) depending on the braking ability of the train, terrain data and changing weather on the route. These processes are defined in ETCS. The procedure for stepwise regulation of deceleration is carried out by the driver repeatedly in the process of braking until the train stops completely. The beginning of emergency braking and its end, as well as the braking process itself, is accompanied by repeated pulsed operation of the brakes, which leads to jumps in deceleration and, accordingly, to increased wear of the brake system, a decrease in comfort for passengers, which results in the limitation of the maximum allowable speed. The article proposes a new concept and technique for constructing mathematical models of emergency braking curves different from ETCS curves and based on harmonic half-waves. It is shown that the ETCS deceleration curves are described by known second-order power half-waves. Their joint study gives grounds to assert that the application of these curves leads to the obligatory pulsed mode of brake operation. Two new variants of models of emergency braking curves described by harmonic half-waves are proposed. The first option has one pulsed brake application at the end of the braking interval. The second option is free from braking impulses and allows the use of continuous regulation. These models explain the features of ETCS, contain proposals for their elimination, and are applicable to the development of new emergency braking curves that allow smooth control of emergency braking of trains. Efficiency, differences and advantages over ETCS braking curves are shown on the results of mathematical modeling of emergency braking processes.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems

Reference23 articles.

1. Ehret M. Virtual Train Brakes // Eisenbahnwesen-Seminar, TU-Berlin. 2020. 49 p.

2. ERTMS/ETCS. System Requirements Specification. Chapter 6. Management of older System Versions. 2016. no. 3.6.0. 46 p.

3. Introduction to ETCS Braking Curves. Version 1.5. ERA ERTMS Unit. 2020. 28 p.

4. «СИНКАНСЭН»: как работают скоростные поезда в Японии. URL: https:// varlamov.ru/3259684. html (дата обращения: 26.07.2023).

5. Performance and Financing Agreement – Infrastructure Condition and Development Report. Deutsche Bahn AG Group, 2019. Available at: https://www.eba.bund.de/DE/Themen/Finanzierung/LuFV/IZB/izb_node.html;jsessionid=9FA5FFD4733F0B2522224C879CABE1A9.live11292 (accessed: 10.09.2023).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3